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Polynomial monads and delooping of mapping spaces

Michael A. Batanin and Florian De Leger

Abstract. We extend some classical results — such as Quillen’s Theorem A, the Grothendieck
construction, Thomason’s theorem and the characterisation of homotopically cofinal functors
— from the homotopy theory of small categories to polynomial monads and their algebras.

As an application we give a categorical proof of the Dwyer–Hess and Turchin results
concerning the explicit double delooping of spaces of long knots.
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Part I. Polynomial monads and homotopy theory

1. Introduction

The homotopy theory of small categories is a product of decades of development
by many prominent mathematicians; to name a few: Quillen, Grothendieck and
Thomason [14, 19, 22]. More recent significant progress is the work of Maltsiniotis
and Cisinski [8, 17]. The theory provides a vital formalism for many applications in
algebraic geometry, algebraic K-theory and algebraic topology.

In this paper we show that some of the fundamental constructions and results from
the homotopy theory of small categories are still valid in the larger context of the
category of finitary polynomial monads. The theory of finitary polynomial monads
(equivalently known as †-free coloured Set-operads) is a multivariable extension of
the theory of small categories. Indeed, a small category C with the set of objects I
determines an endofunctor C WSetI ! SetI , where SetI is the category of I -indexed
collections of sets:

C.X/.i/ D
a
j

C.j; i/ �X.j /;

where C.j; i/ is the set of morphisms in C from j to i . It is easy to see that the
functor C preserves connected limits. The category structure of C amounts then to
a structure of cartesian monad on the functor C . The last conditions mean that the
unit and multiplication of this monad are cartesian natural transformations; that is,
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all naturality squares are pullbacks. The category of algebras for this monad is
isomorphic to the category of covariant presheaves SetC.

Finitary polynomial monads can be defined as cartesian monads whose
underlying functor is a coproduct of sets which involve multivariable summands
like B.j1; : : : ; jkI i/�X.j1/� � � � �X.jk/ with finitely many factors. The category
of algebras of such a monad is the category of I -collections equipped with the
operations

B.j1; : : : ; jkI i/ �X.j1/ � � � � �X.jk/! X.i/

which satisfy appropriate associativity and unitarity conditions. One can also give
the structure of an algebra by specifying a family of maps

bWX.j1/ � � � � �X.jk/! X.i/; b 2 B.j1; : : : ; jkI i/:

An important fact is: the category of algebras of a finitary polynomial monad can
be defined in any symmetric monoidal category E . Indeed, it suffices to replace the
cartesian product of sets in the definition of algebra by the tensor product of objects
in E .

It was observed by the first author in [3] that the algebras of a polynomial monad in
the symmetric monoidal category .Cat;�; 1/ of small categories (called categorical
algebras) play a special role. For such algebras the theory can be internalised; that
is, one can consider a kind of algebra (called internal algebra) inside a categorical
algebra of a polynomial monad. Formally, an internal T -algebra inside a categorical
T -algebra A is defined as a lax T -algebra map from the terminal T -algebra 1 to A.

A good example to have in mind is the category of monoids in any monoidal
category. We consider a monoidal category as a categorical (pseudo)algebra of a
finitary polynomial monad (the free monoid monad)M given by the geometric series
M.X/ D

`
n�0X

n. It is well known then that a monoid in a monoidal category A
is the same thing as a lax-monoidal functor from the terminal monoidal category 1
to A; that is, a laxM -algebras map 1! A.

Remark 1.1. More precisely, the categorical algebras of M are strict monoidal
categories. However, this difference between strict monoidal categories and general
monoidal categories does not play much role in our theory due to Mac Lane’s
coherence theorem.

A classical observation of Lawvere is that the theory of monoids is represented by
the monoidal category of finite ordinals�alg in the sense that this monoidal category
is freely generated by a monoid (the terminal ordinal) inside it. This means that a
monoid in a monoidal category A is the same as a strict monoidal functor from�alg
to A.

It was shown in [3] that this observation of Lawvere has a far reaching
generalisation: for any cartesian map between cartesian monads f WS ! T , there
exists a categorical T -algebra T S with a nice universal property: it is freely generated
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by an internal S -algebra. We called this algebra the classifier of internal S -algebras
inside categorical T -algebras.

The theory of classifiers provides a link between Grothendieck’s homotopy
theory and polynomial monads. For example, if f WS ! T is a functor between
small categories (interpreted as a map between the corresponding cartesian monads)
then T S is the covariant Cat-valued presheaf on T which associates to an object i 2 T
the comma (or slice) category f=i . This slice category construction is one of the
main tools of the homotopy theory of small categories.

The theory of internal algebras classifiers for polynomial monads and its
applications was developed further by the first author and Clemens Berger in [5].
An application of this theory to the Baez and Dolan stabilization hypothesis for
higher dimensional categories was found in [1]. It was observed that the homotopy
type of the classifier for f WS ! T can tell us a lot about the homotopy behaviour
of the adjoint pair of functors between simplicial algebras of T and S induced by f ,
very much like in the homotopy theory of small categories where the homotopy type
of slices of a functor provides important information about homotopy Kan extensions
along this functor.

In this paper we take this analogy seriously and develop a formalism extending
that of the homotopy theory of small categories. The main ingredients of our new
formalism are:
1. An analogue of the Grothendieck construction for a polynomial monad and

interpretation of the classifier construction as its left adjoint;
2. An analogue of Quillen’s Theorem A for polynomial monads;
3. The analogue of the characterisation of homotopically cofinal functors in terms

of preservation of homotopy limits.
4. A generalisation of Thomason’s theorem about the homotopy colimit of nerves of

a diagram of small categories.
It turns out that this extended formalism provides some extra flexibility which is

not achievable in the classical setting of small categories. For example, one can add
constants to the theory, which turns out to be very useful in the study of homotopy
mapping spaces between simplicial algebras.

As an illustration of the power of this formalismwe give a new proof of theDwyer–
Hess–Turchin result on explicit double delooping of the space of long knots [11,23].
Our work was, in fact, inspired by the paper of Turchin [23].

The space Emb.R1;Rm/ of long knots modulo immersions is a homotopy fiber
of the map

Emb.R1;Rm/! Imm.R1;Rm/;

where Emb.�;�/ is the space of embeddings and Imm.�;�/ is the space of
immersions with compact support (that is, it is equal to the standard embedding
outside of a compact subspace).
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Dwyer–Hess and independentlyTurchin proved the following statement: form>3,
there is a weak equivalence of spaces

Emb.R1;Rm/ � �2MapOp.D1;Dm/; (1)

whereDk is aEk-operad (that is, any operad homotopy equivalent to the little k-disks
operad), MapOp.�;�/ is the homotopy mapping space in the category of symmetric
operads and � is the loop space functor.

Both proofs use an earlier result of Sinha [20] about the weak equivalence:

Emb.R1;Rm/ � fTot.K/; (2)

where fTot.K/ is the cosimplicial totalization of the Kontsevich operad K . This
construction is possible because K is not only an Em-operad but it is also
multiplicative; that is, it is equipped with a map of non-symmetric operads
Ass ! d1K , where Ass is the terminal non-symmetric operad and d1.�/ is the
functor of desymmetrisation (that is, the functor forgetting the symmetric groups
actions).

In fact, Dwyer–Hess andTurchin established the followingmore general delooping
result:
Theorem 1.2. For any multiplicative reduced non-symmetric operad O, there are
two weak equivalences of mapping spaces:

MapBimod.Ass;O/ � �MapNOp.Ass;O/

and
MapWBimod.Ass;O/ � �MapBimod.Ass;O/;

where mapping spaces are taken in the model categories of non-symmetric oper-
ads NOp, Ass-bimodules Bimod and weak Ass-bimodules WBimod. Reducedness
means that O0 and O1 are both contractible spaces.

This theorem is applicable to delooping the space of long knots because (as several
people observed) the categoryWBimod is isomorphic to the category of cosimplicial
objects and, hence, the (homotopy) cosimplicial totalization functor is the homotopy
mapping space from the terminal weak bimodule.

The proofs of this theorem by Dwyer–Hess and Turchin are both based on
homotopy theory but of different flavours. Turchin uses some very explicit cofibrant
resolutions for operads, bimodules and weak bimodules and then constructs all
necessary higher homotopies by hand. Dwyer and Hess use model theoretical
argument related to moduli spaces (in fact they prove a more general statement
about relations between homotopy mapping spaces of monoids and bimodules).
Unfortunately, both proofs are very technical and do not provide a clear conceptual
explanation of the result. Consequently both proofs are hard to generalise to other
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situations where we want to study the delooping of mapping spaces; for example, for
delooping the higher dimensional spaces of embeddings.

We approach this question by observing that all three categories NOp, Bimod
and WBimod are categories of algebras of appropriate polynomial monads. The
mapping spaces like MapNOp.Ass;O/ are then the “derived versions” of the category
of internal algebras. So the statement of the theorem can be conceptually understood
in the setting of internal algebras.

For example, the first delooping statement can be understood at the outset through
the following “baby” case. Supposewe are given twomaps of non-symmetric operads
Ass! O in Cat. One can then construct an Ass-bimodule out of O using the first
map to define a left action of Ass and the second map to define a right action. Now,
suppose that O is a groupoid in each degree and O1 is a contractible groupoid. Then
one can prove by hand that the process above has an inverse; that is, any bimodule
structure on the collection of categories O is obtained from two maps of operads
Ass ! O. In general, Turchin–Dwyer–Hess delooping is essentially the above
statement where O is now an operad in !-groupoids. Of course, in this case the
inverse functor reconstructs two operadic maps as well as an operadic structure on O,
but only up to higher homotopies. In our formalism this statement is equivalent to
the statement that the map of polynomial monads

BimodC ! NOp��

is homotopically cofinal (Theorem 10.2). Here, BimodC is the polynomial monad
for Ass-bimodules with an additional distinguished point in the degree 1 component
and NOp�� is the polynomial monad for double multiplicative operads; that is, non-
symmetric operads equipped with two maps from Ass.

We believe that the possibility of using the above kind of reasoning to conceptually
understand a problem, and then apply formal high level homotopy theory language to
finish the proof, illustrates an important powerful feature of our approach. We expect
the technique to be very useful in future applications.

Here is the plan of the paper. Part I is devoted to the formalism of the homotopy
theory of polynomial monads. We define the category of Internal algebras of
polynomial monads in Section 3. We then show that there is an analogue of
the Grothendieck construction for polynomial monads which produce a polynomial
monadmap out of a categorical algebra of a polynomial monad. We then interpret the
category of internal algebras as a category of sections of Grothendieck constructions.
In this sense the category of internal algebras can be thought as the nonabelian
cohomology of the polynomial monad. The category of relative internal algebras
also admits an interpretations in terms of a category of liftings. In Section 3 we
recall the definition of internal algebra classifiers and their construction in terms of
a codescent object. Our new result here is that the classifier construction is the left
2-adjoint to the Grothendieck construction.



1526 M. A. Batanin and F. De Leger

In Section 5 we relate internal algebra classifiers with the homotopy theory of
simplicial algebras over a polynomial monad. Here we prove Quillen’s Theorem A
for polynomial monads. We also introduce the notion of homotopically cofinal maps
between polynomial monads and show that these maps can be characterised in terms
of maps between mapping spaces between algebras very much as homotopically
cofinal functor can be characterised as functors restriction along which preserves
homotopy colimits.

In Section 6 we develop yet another version of Grothendieck construction which
we call twisted Boardman–Vogt tensor product. It is interesting that these two
versions ofGrothendieck constructions coincide in the 2-category of small categories.
We prove then a generalisation to polynomial monads of Thomason’s theorem about
the colimit of the diagram of nerves of small categories. In Section 7 we apply this
criteria to introduce a notion of homotopically cofinal square of polynomial monads.
These are exactly the commutative squares of polynomial monads which induce the
homotopy pushouts of nerves of classifiers over any fixed polynomial monad.

In Section 8 we prove some useful results about formal delooping of homotopy
mapping spaces between pointed algebras of polynomial monads. These results will
play main role in our approach to the proof of the Dwyer–Hess–Turchin theorems in
Part II of our paper. We must add that most of our results about homotopy mapping
spaces can be proved for (semi) model categories of algebras of polynomial monads
in a monoidal model category satisfying some very moderate assumptions. We do
not do it in this paper just because it would make the proofs more technical and longer
at the expense of clarity of exposition of the main new ideas.

In Section 9 we briefly remind the reader about multiplicative operads, bimodules
and weak bimodules, and show that there are polynomial monads for all these
categories.

In Section 10we prove a result about homotopy cofinality of a certainmap between
polynomialmonads (Theorem 10.2). This result is a vast generalisation of theDwyer–
Hess–Turchin result where we compare mapping spaces between cospans of operads
and bimodules over different operads. This is exactly this theorem which provides a
conceptual explanation of the existence of Dwyer–Hess and Turchin delooping. An
analogous result holds for mapping spaces between cospans of bimodules and two
sided weak bimodules.

In Section 11 we show how cofinality of the maps BimodC ! NOp�� and
WBimodC ! Bimod�� follows from Theorem 10.2. Finally, in Section 12 we
provide a proof of the Dwyer–Hess–Turchin theorem which is now a relatively
simple consequence of our formal delooping theorems and the second cofinality
Theorem 11.1.

Latest developments. A significant progress in explicit delooping of the embedding
spaces wasmade recently in [7,9,10]. The approach of Boavida andWeiss [7] is more
topological, whereas our approach is categorical and combinatorial and is closer to
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the Dwyer–Hess and Ducoulombier–Turchin approaches in [9, 10]. As it is noticed
in [7]: “. . . the Dwyer–Hess result is a theorem about fairly general operads and as
such it has a different scope and applicability from our result.” There are, however,
very interesting connections between all these approaches andwe are going to address
it in a future paper.

2. Polynomial monads

Definition 2.1 ([5, 13, 16]). A finitary polynomial P is a diagram in Set of the form

J E
soo

p
// B

t // I

where p�1.b/ is a finite set for any b 2 B .
Each polynomialP generates a functor called polynomial functor between functor

categories
P WSetJ ! SetI

which is defined as the composite functor

SetJ s� // SetE p� // SetB tŠ // SetI

where we consider the sets J;E;B; I as discrete categories and s� is the restriction
functor andp� and tŠ are the right and left Kan extensions correspondingly. Explicitly
the functor P is given by the formula

P.X/i D
a

b2t�1.i/

Y
e2p�1.b/

Xs.e/; (3)

which explains the name “polynomial”: its values are sums of products of formal
variables.

A cartesian morphism between polynomial functors is a natural transformation
between the functors such that each naturality square is a pullback. One can prove
that such a cartesian morphism is determined by a commutative diagram in Set

J 0

��

E 0
s0oo

p0
//

��

B 0
t 0 //

��

I 0

��

J E
soo

p
// B

t // I

such that the middle square is a pullback.
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Composition of finitary polynomial functors is again a finitary polynomial
functor. Sets, finitary polynomial functors and their cartesian morphisms form a
2-category Poly.
Definition 2.2. A finitary polynomial monad is a monad in the 2-category Poly.
Remark 2.3. Finitary polynomial functors preserve filtered colimits and pullbacks.
Polynomial monads are cartesian; that is, their underlying functors preserve pullbacks
and their units and multiplications are cartesian natural transformations.
Remark 2.4. One can consider more general polynomial functors of non-finitary
type. Since in this paper we shall not need these more general functors, we use the
term polynomial monad for finitary polynomial monad.

For a polynomial monad T

I E
soo

p
// B

t // I (4)

we will call the set I the set of colours of T , the set B the set of operations of T , the
set E the set of marked operations of T , the map t the target map and the map s the
source map. The map p will be called the middle map of T .

Explicitly, the structure of polynomial monad is given by a family of elements
(units) 1i 2 B for all i 2 I such that t .1i / D i , s.p�1.1i // D fig, and a
composite�T .bI b1; : : : ; bk/ for each b 2 B , and each list of elements b1; : : : :bk 2 B
together with a bijection �W f1; : : : ; kg ! s.p�1.b// such that t .bm/ D �.m/. These
data should satisfy unitarity, associativity and equivariancy conditions. Polynomial
monads and their cartesian maps form a category PMon.
Example 2.5. One can consider a small category C with the set of objects I and set
of morphisms B as a polynomial monad

I B
soo id // B

t // I

where s and t are the usual source and target maps. This gives us a full embedding of
categories Cat! PMon. This embedding has a right adjoint which for a polynomial
monad T returns its submonad of unary operations.
Example 2.6 ([5]). The free monoid monad is a polynomial monad represented by
the diagram

1 Ltr�soo
p

// Ltr t // 1

where Ltr is the set of isomorphism classes of linear trees (or equally the set of all
ordinals f0 < 1 < � � � < ng), the set Ltr� is the set of linear trees with one vertex
marked (equivalently the set of all ordinals f0 < 1 < � � � < k� < � � � < ng), the set of
colours is the one object set. The middle map forgets the marking. The multiplication
in the monad is generated by insertion of a linear tree to the marked vertex of another
tree.
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Example 2.7. Recall that a non-symmetric operad O in a symmetric monoidal
category .E;˝; e/ is given by:
� an object On in E for all integers n � 0,

� a morphism �W e ! O1 called unit,

� morphisms
mWOk ˝On1 ˝ � � � ˝Onk ! On1C���Cnk

called multiplication,

such that the usual associativity and unitarity conditions are satisfied.
The polynomial monadNOp for non-symmetric operads was described in [5,16].

The corresponding polynomial is:

N Ptr�soo
p

// Ptr t // N

Here, Ptr;Ptr� are the sets of isomorphism classes of planar trees, and planar trees
with a marked vertex respectively. The middle map forgets the marked point, the
source map is given by the number of incoming edges for the marked point and the
target map associates to a tree its number of leaves. The multiplication in this monad
is generated by insertion of a tree inside a marked point.

Let E be a cocomplete symmetric monoidal category and T be a polynomial
functor. One can construct a functor T E WEI ! EI given by a formula similar to (3):

T E.X/i D
a

b2t�1.i/

O
e2p�1.b/

Xs.e/:

If I D J and T was given the structure of a polynomial monad then T E would
acquire a structure of monad on EI . This last category will be called the category
of I -collections in E . The category of Set-collections often will be called simply
the category of I -collections and the category of Cat-collection will be called the
category of categorical I -collections.

Definition 2.8. The category of algebras of a polynomial monad T in a cocomplete
symmetric monoidal category E is the category of algebras of the monad T E .

Explicitly, an E-algebra A of a polynomial monad T is given by a collection
Ai 2 E; i 2 I , equipped with the following structure maps:

m.b;�/WAs.�.1// ˝ � � � ˝ As.�.k// ! At.b/

for each b 2 B , and each bijection � W f1; : : : ; kg ! p�1.b/ which satisfy some
appropriate associativity, unitarity and the following equivariancy condition [5].
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If � 0W f1; : : : ; kg ! p�1.b/ is a bijection then the following triangle commutes:

As.�.1// ˝ � � � ˝ As.�.k//
� //

m.b;�/
((

As.� 0.1// ˝ � � � ˝ As.� 0.k//

m.b;�0/
vv

At.b/

where � is the action of the permutation .� 0/�1 ı � .
Remark 2.9. The presence of the linear ordering of p�1.b/ in the formula above is
necessary to fix an order of tensor products. The equivariancy condition assures that
the structure maps do not depend on the ordering [5]. This is closely related to the
fact that the category of polynomial monads is equivalent to the category of †-free
symmetric operads. The category of algebras of a polynomial monad is isomorphic
to the category of algebras of the corresponding †-free operad [5].

3. Internal algebras and Grothendieck construction

Algebras of a polynomial monad T in the symmetric monoidal category of small
categories .Cat;�; 1/will play a special role. We will call them categorical algebras
of T . The category of categorical algebras of T is isomorphic to the category of
internal categories in the category of T -algebras of T (in Set). The category of
categorical T -algebras is naturally a 2-category. We will use this fact but preserve
the notation AlgT .Cat/ for this 2-category.

A terminal internal category has a unique T -algebra structure for any polynomial
monad T ; the latter promotes it to a terminal categorical T -algebra. From now on
all terminal objects will be denoted 1 hoping that this will cause no confusion.

The following definitions are taken from [3] and [5].
Definition 3.1. Let A be a categorical T -algebra for a polynomial monad T .

An internal T -algebra in A is a lax morphism of categorical T -algebras from the
terminal categorical T -algebra to A.

Internal T -algebras in A and T -natural transformations form a category IntT .A/
and this construction extends to a 2-functor IntT WAlgT .Cat/! Cat.

An internal T -algebra in a categorical T -algebra A can be explicitly given by a
collection of objects ai 2 Ai together with a morphism

�.b;�/Wm.b;�/.as.�.1//; : : : ; as.�.k///! at.b/;

for each operation .b; �/, which satisfies obvious associativity, unitarity and
equivariancy conditions. Here, m.b;�/ is the structure functor of A.

Given a cartesian map of polynomial monads f WS ! T we have a restriction
2-functor f �WAlgT .Cat/! AlgS .Cat/.
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Definition 3.2. Let A be a categorical T -algebra for a polynomial monad T .
An internal S -algebra in A is a lax morphism of categorical S -algebras from the

terminal categorical S -algebra to f �.A/.
Internal S -algebras in A and S -natural transformations form a category IntS .A/

and this construction extends to a 2-functor

IntS WAlgT .Cat/! Cat: (5)

We will also need the following generalisation of the classical Grothendieck
construction for categories to polynomial monads. Let T be a polynomial monad
and let A be a categorical algebra for it. We construct a new polynomial monad

R
A

as follows. The set of colours of
R
A is the set of pairs .i; a/ where a is an object of

the category Ai . An operation consists of:
1. An element b 2 B;
2. For each element e 2 p�1.b/ an object ae 2 As.e/;
3. An object y 2 At.b/;
4. Amorphismf.b;�/Wm.b;�/.a�.1/; : : : ; a�.k//! y inAt.b/ for each� W f1; : : : ; kg !
p�1.b/, which satisfies the following equivariancy condition. If � 0W f1; : : : ; kg !
p�1.b/, and �.a�.1/; : : : ; a�.k// D .a� 0.1/; : : : ; a� 0.k// then

f.b;�/ D f.b;� 0/:

Obviously, to specify an operation it suffices to know the morphism f.b;�/. A marked
operation in

R
A is an operation in which one of the elements e 2 p�1.b/ is marked.

As usual, the middle map forgets about marking. The target map of the monad
R
A

is the pair .t.b/; y/ and the source map is .s.e/; ae/ where e is the marked element.
To describe composition suppose we are given a list of operations f.b1;�1/; : : : ;

f.bk ;�k/with targets .y1; : : : ; yk/ 2 At.b1/�� � ��At.bk/ in
R
A and an operationg.c;�/

with compatible sources. Due to the equivariancy condition, we always can choose �
in a way that these compatibility condition mean that m.c:�/.y�.1/; : : : ; y�.k// is
the source of g.c;�/. Hence, we define the composite operation in

R
A as the

operation h.d;�/ where d is an operation in T obtained as a composite of c and
b1; : : : ; bk , the underlying morphism is the composite of two morphisms

g.c;�/ ım.c;�/.f.b1;�1/; : : : ; f.bk ;�k//;

and
� D � ı .�1 � � � � � �k/:

The unit of the monad
R
A sends an operation in the identity monad .i; a/ to

the operation id.ei ;1/ where ei D �.i/ 2 B and 1 is the unique function from
1! p�1.ei /.
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The polynomial monad
R
A comes equipped with a cartesian map of monads

�W
R
A! T . A section of � is a map of polynomial monads T !

R
A such that its

composite with � is the identity. It is quite obvious that there is a bijection between
sections and internal T -algebras in A.

We need to enhance this bijection to a functor. For this we first extend the
category PMon to a 2-category PMon. Let f; f 0WS ! T be two cartesian maps
between polynomial monads given by the diagram

J

�

��

�0

��

D
voo

q
//

�

��

� 0

��

C
u //

 

��

 0

��

J

�

��

�0

��

I E
soo

p
// B

t // I

A natural transformation �Wf ! f 0 consists of map � WJ ! B , such that
for any j 2 J the set p�1.�.j // has only one element, t .�.j // D �0.j /,
s.p�1.�.j /// D �.j /, and for any c 2 C there is an equality

�T .�.u.c//I .c// D �T . 
0.c/I �.v.c1//; : : : ; �.v.ck///;

where fc1; : : : ; ckg D q�1.c/. If f and f 0 are functors between small categories this
definition amounts to the definition of a natural transformation between f and f 0.
Proposition 3.3. The category of internal T -algebras in A is isomorphic to the
category of sections of � and natural transformations between them such that their
composite with � is the identity natural transformation of the identity map of T .

Proof. By direct calculations.

Remark 3.4. If T is a polynomial monad with an identity middle map (that is a
small category) our polynomial Grothendick construction coincides with the classical
Grothendieck construction of a functor AWT ! Cat. The category of internal
algebras IntT .A/ is, therefore, the lax-limit of this functor and

R
A is its lax-colimit.

Let PMon=R be the 2-category of polynomial monads over R. The objects of
this 2-category are cartesian polynomial monad morphisms:

gWT ! R;

the morphisms are commutative triangles:

S
f

//

h ��

T

g
��

R
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and 2-morphisms are natural transformations f ! f 0 such that the whiskering
with g is an identity transformation of h. With this notation, the category of sections
above is the hom-category .PMon=T /.T;

R
A/.

Now let f WS ! T be a cartesian map of polynomial monads given by a
commutative diagram:

J

�

��

D
voo

q
//

�

��

C
u //

 

��

J

�

��

I E
soo

p
// B

t // I

(6)

If A is a categorical algebra of T , the algebra f �.A/ has the following explicit
description. The underlying collection of f �.A/ is given by the collection f �.A/j D
A�j . The structure functor

m.c;�/Wf
�.A/v.�.1// � � � � � f

�.A/v.�.k// ! f �.A/u.c/

is given by the functor m.�.c/;� 0/, where � 0 is the composite

f1; : : : ; kg
�
! q�1.c/

� 0

! ��1. .c//:

In the last display � 0 is the bijection induced by � on fibers due to the fact that the
middle square is a pullback.
Proposition 3.5. Let A be a categorical algebra of a polynomial monad T . Also
let f WS ! T be a map of polynomial monads. Then there is a cartesian
map of polynomial monads

R
f W
R
f �.A/ !

R
A making the following diagram

commutative R
f �.A/ //

��

R
A

�

��

S
f

// T

(7)

Moreover, this diagram is a pullback of polynomial monads.

Proof. The colours of
R
f �.A/ are pairs .j; a/ where a 2 f �.A/j D A�.j /. The

operations of
R
f �.A/ are morphisms

f� Wm.c;�/.a�.1/; : : : ; a�.k//! y
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in f �.A/u.c/ D At. .c//, where

a�.i/ 2 f
�.A/v.�.i// D A�.v.�.i/// D As. .�.i/// D As.� 0.i//:

We define
R
�.j; a/ D .�.j /; a/ on colours. We observe that an operation f� as

above can be interpreted as an operation

f� 0 Wm .c/;� 0.a� 0.1/; : : : ; a� 0.k//! y

and, hence we define
R
�.f� / D f� 0 . The definition of

R
f on marked operations is

obvious.
It is now a simple exercise to check that the square of polynomial monads is a

pullback.

We obtain the following generalisation of Proposition 3.3:

Corollary 3.6. The category of internal algebras IntS .A/ of S in A is isomorphic
to the category .PMon=T /.S;

R
A/ of cartesian maps between polynomial monads

S !
R
A over T and their natural transformations such that their composite with �

is the identity transformation of f .

4. Classifiers for maps between polynomial monads

For any cartesian morphism of cartesian monads f WS ! T one can associate a
categorical T -algebra T S with certain universal property [3, 5, 24]. Namely, this is
the object representing the 2-functor (5). This categorical T -algebra is called the
classifier of internal S -algebras inside categorical T -algebras and is denoted T S .

In particular, if f D Id the T -algebra T T is called an absolute classifier of T .
It was proved in [3,5] that an absolute classifier of T can be computed as a truncated
simplicial T -algebra:

FT 1 T�1 // FT .T1/
�1oo

T �
oo FT .T

21/�T1oo

T�1oo

T 2�

oo

where 1 is the terminal I -collection, � WT .1/ ! 1 is the unique map, FT is the
free T -algebra functor. This simplicial object satisfies Segal’s condition because T
is a cartesian monad and, hence, represents an internal category in the category
AlgT .Set/. The last category is equivalent to AlgT .Cat/ again due to cartesianness
of T .

It is important to understand that T T is a family of categories indexed by i 2 I .
It has a universal internal T -algebra 1 ! T T which generates it. A component of
this internal algebra 1i 2 .T T /i is a terminal object in this category.
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Example 4.1. If T is a small category, the categorical T -algebra T T is the presheaf
of categories on T given by comma-categories T T .i/ D T=i . The universal internal
algebra is given by objects i

id
! i for each i .

Example 4.2. [5] For the free monoid monad Mon the absolute classifier MonMon

is the monoidal category of all finite ordinals �alg. The universal internal algebra is
given by the terminal ordinal Œ0�.
Example 4.3. [5] For the free nonsymmetric operad monad NOp, the absolute
classifier NOpNOp is the non-symmetric categorical operad of planar trees. The
morphisms are generated by contractions of internal edges and introducing a single
vertex on an edge. The canonical internal operad is given by the sequence of corollas.

There are analogous formulas in the non absolute case. Namely, given a cartesian
map between polynomial monads f WS ! T as in (6), we have the following
commutative square of adjunctions:

AlgS
fŠ

//

US

��

AlgT
f �

oo

UT

��

SetJ
�Š

//

FS

OO

SetI
��

oo

FT

OO

Here �� is the restriction functor SetI ! SetJ induced by �WJ ! I and
�ŠWSetJ ! SetI is its left adjoint given by coproducts over fibers of �.

The T -categorical algebra is given then by an internal categorical object similar
to the absolute case:

FT .�Š.1// T�1 // FT .�Š.S1//
�1oo

T Š
oo FT .�Š.S

21//�T1oo

T�1oo

T 2Š

oo

where 1 is now the terminal J -collection.
The classifier construction provides a 2-functor

T .�/WPMon=T ! AlgT .Cat/:

Proposition 4.4. Let T be a polynomial monad. The classifier 2-functor

T .�/WPMon=T ! AlgT .Cat/:

is the (Cat-enriched) left adjoint to the Grothendieck construction 2-functorZ
.�/WAlgT .Cat/! PMon=T:
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Proof. LetA be a categorical algebra of T and let f WS ! T be a polynomial monad
over T . Then

AlgT .Cat/.T S ; A/ Š IntS .A/ Š PMon=T
�
S;

Z
A
�

by Corollary 3.6.

Corollary 4.5. The classifier functor commutes with colimits.
In particular, given a pushout diagram of polynomial monads

A
f

//

g

��

B

F

��

C
G // D ;

(8)

we obtain a pushout of categoricalD-algebras:

DA Df //

Dg

��

DB

DF

��

DC DG // DD

(9)

The following functorial properties of classifiers will be very useful for us:
Proposition 4.6. Let f WS ! T be a map of polynomial monads. Let f � be the
restriction functor on categorical algebras and let fŠ be its left adjoint. Then

fŠ.S
S / Š T S :

Proof. The proof is a simple exercise in universal properties of adjoints and
classifiers.

This implies another functorial property of classifiers.
Proposition 4.7. Any commutative square of maps of polynomial monads

A
f

//

g

��

B

F

��

C
G // D

(10)
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induces a map of classifiers

Gf WCA ! G�.DB/

functorial with respect to horizontal pasting of squares.

Proof. Observe that we have a natural map of classifiers CA ! G�.DA/. Indeed,
by adjunction such a map corresponds to a map GŠ.CA/ ! DA. But GŠ.CA/ Š
GŠ.gŠ.A

A// Š DA as proved in Proposition 4.6.
We can now take the composite

CA ! G�.DA/! G�.DB/;

where the last map is induced by the upper commutative triangle of the square.

More generally given a commutative square (10) let X and Y be categorical
algebras of C andD correspondingly and let �WX ! G�.Y / be its morphism. And
let xW 1 ! g�.X/ be an internal A-algebra in C and yW 1 ! F �.Y / be an internal
B-algebra in Y .
Definition 4.8. A morphism of internal algebras x ! y is a lax transformation
�W x ! f �.y/ of the internal algebras as displayed on the following square of
categorical A-algebras and their morphisms:

1
x //

id

��

�
 �

g�.X/

g�.�/

��

f �.1/
f �.y/
// g�.G�.Y // D f �F �.Y /

(11)

The following proposition establishes a universal property of the morphism Gf :
Proposition 4.9. The morphism Gf from Proposition 4.7 induces a morphism of
canonical internal algebras a in CA and b in DB in the sense of the Definition 4.8
such that �W a! f �.b/ is an identity and is determined by this property.

Proof. The proof is by checking universal property.

5. Homotopy theory of algebras and classifiers

Let .E;˝; e/ be a monoidal model category and let T be a polynomial monad. The
category of I -collections EI has a projective model structure. For a polynomial
monad T we can try to transfer this model structure on collections to the category of
T -algebras along the forgetful functor UT WAlgT .E/ ! EI . This process requires



1538 M. A. Batanin and F. De Leger

some conditions on E and T [5]. If we need only a semi-model model structure on
AlgT .E/ it suffices for E to be cofibrantly generated [25]. In many cases of interest
(for simplicial sets, topological spaces or chain complexes in characteristic 0, for
example) we do have a full model structure.

Classifiers enter the scene because of the following theorem proved in [5,
Theorem 8.2].
Theorem 5.1. LetE be amonoidal model category with a “good” realisation functor
for simplicial objects, and let f WS ! T be a cartesian monad morphism between
polynomial monads. Let X be an S -algebra in E whose underlying J -collection
is pointwise cofibrant. Then the I -collection underlying the left derived Quillen
functor LfŠ.X/ can be calculated as the homotopy colimit over T S of the functor
zX WT S ! E representing the S -algebra X .

The Theorem 5.1 has an important corollary which allows an interpretation of
the nerve of a relative classifier of a map f WS ! T as the value of the left derived
functor of fŠ on the terminal S -algebra.
Corollary 5.2 ([5]). The nerve N.T S / is a cofibrant simplicial T -algebra. In fact,

N.T S / Š N.fŠ.T
T // Š fŠ.N.T

T // D LfŠ.1/;

where 1 is the terminal simplicial S -algebra.
A “good” realisation functor always exists if the category E is a simplicial model

category. For a simplicial model category M, we will denote by M.X; Y / the
simplicial hom functor betweenX and Y . If E is a simplicial category then AlgT .E/
is also a simplicial category for any polynomial monad T . If the transferred model
category structure onAlgT .E/ exists then it is also a simplicial model structure and an
adjunction between categories of algebras generated by a map of polynomial monads
is also a simplicial adjunction. In particular, all this is true for simplicial algebras of
polynomial monads.

Recall also, that in a simplicial model category M the mapping space
MapM.X; Y / can be computed as the simplicial hom M.cof.X/;fib.Y // where
cof and fib are cofibrant and fibrant replacement respectively [15].
Theorem 5.3 (Quillen Theorem A for Polynomial monads). For any commutative
diagram of maps of polynomial monads

S
f

//

h ��

T

g
~~

R

�

��

P

if N.RS / ! N.RT / is a weak equivalence then N.P S / ! N.P T / is a weak
equivalence.
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Proof. We have

N.P T / Š .g ı �/Š.N.T
T // Š �Š.N.gŠ.T

T // Š �Š.N.R
T //:

If X is a fibrant simplicial P -algebra then the induced morphism of simplicial homs

AlgP .N.P S /; X/ AlgP .N.P T /; X/

is isomorphic to

AlgP .�Š.N.RS //; X/ AlgP .�Š.N.RT //; X/

and by adjunction to

AlgR.N.RS //; ��X/ AlgR.N.RT /; ��X/:

Since ��.X/ is fibrant and N.RS / and N.RT / are cofibrant R-algebra, the last map
is a weak equivalence. So, N.P S /! N.P T / is a weak equivalence as well.

Corollary 5.4 (Classical Quillen Theorem A). If in a commutative triangle of small
categories

S
f

//

h ��

T

g
��

R

f induces a weak equivalence N.h=r/ ! N.g=r/ for any object r 2 R then
N.f /WN.S/! N.T / is a weak equivalence.

Proof. Consider this commutative triangle as commutative triangle of morphisms
between polynomial monads. The maps of comma categories h=r ! g=r are the
components of map of classifiers RS ! RT .

Take P D 1, the terminal category, and �WR ! P the unique functor. Then we
can apply Theorem 5.3. N.f / is exactly the nerve of the map between classifiers
1S ! 1T .

Corollary 5.5. Let f WS ! T be a map of polynomial monads. The following
statements are equivalent:
1. N.T S / is contractible;
2. For any commutative triangle of maps of polynomial monads

S
f

//

h ��

T

g
��

R

(12)

the morphism N.Rf /WN.RS /! N.RT / is a weak equivalence.
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Proof. (1)! (2). The triangle above can be rewritten as a commutative diagram

S
f

//

f ��

T

id
��

T

g

��

R

We have N.T f /WN.T S /! N.T T / is a weak equivalence since T T has a terminal
object. By Theorem 5.3, N.RS /! N.RT / is a weak equivalence.

(2)! (1). Take R D T and g D idWT ! T . Then N.T f /WN.T S /! N.T T / is a
weak equivalence implies that N.T S / is contractible.

This result justifies the following definition.
Definition 5.6. A cartesian map f WS ! T between polynomial monads is called
homotopically cofinal if N.T S / is contractible.

A well known classical characterisation of cofinal functors asserts that these are
exactly the functors restriction along which preserves limits. We are going to provide
a similar characterisation of homotopy cofinal maps between polynomial monads.
Theorem 5.7. For a commutative triangle of polynomial monads (12) the following
statements are equivalent:
1. The map N.Rf /WN.RS /! N.RT / is a weak equivalence.
2. For any simplicial R-algebra X the morphism f induces a weak equivalence of

homotopy mapping spaces

MapAlgS .1; h
�X/! MapAlgT .1; g

�X/:

Here 1 means the terminal simplicial algebra.

Proof. From the beginning we can assume that X is a fibrant R-algebra.
We can compute the mapping space MapAlgS .1; h

�X/ as the simplicial hom
AlgS .cof.1/; h�X/where cof.1/ is a cofibrant replacement for the terminal algebra 1.
By adjunction this space is isomorphic to AlgR.LhŠ.1/; X/. By Corollary 5.2
LhŠ.1/ Š N.RS /. Then

AlgR.LhŠ.1/; X/ � AlgR.N.RS /; X/:

Similarly
AlgR.gŠ.cof.1//; X/ � AlgR.N.RT /; X/:

Hence, N.Rf / induces a weak equivalence between these simplicial sets.
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It is obvious that we can reverse these calculations and so prove that N.Rf / is a
weak equivalence provided it induces a weak equivalence between mapping spaces
for all R-algebra X .

Corollary 5.8. A cartesian map between polynomial monads f WS ! T is
homotopically cofinal if and only if for any simplicial T -algebra X it induces a
weak equivalence between mapping spaces:

MapAlgS .1; f
�X/! MapAlgT .1; X/:

Recall that homotopy left cofinal functor is defined in [15, Definition 19.6.1] as
a functor between small categories f WS ! T such that N.f=i/ is contractible for
all objects i 2 I . It coincides with our notion of homotopically cofinal map between
polynomial monads when the latter is specialised to small categories.
Corollary 5.9 ([15, Theorem 19.6.13(b)]). A functor f WS ! T between small
categories is homotopically left cofinal if and only if for any functor X WT ! SSet it
induces a weak equivalence

holimSf �X ! holimTX:

Proof. The homotopy limit of a functorX can be computed as a mapping space from
terminal functor to X .

Remark 5.10. This theorem (and its dual) is proved in [15] in a slightly more general
setting. We are not going to pursue this generality in this paper but it is not hard to get
Hirschhorn’s Theorem from the corollary above and the model theoretic argument
from [5].
Remark 5.11. IfW is a fundamental localizer of Grothendieck [8] then all the results
of this section can be localized with respect to W . In particular, if we take W D W0

(so the weak equivalences between small categories become functors which induce
isomorphisms on �0) the notion of W0-homotopically cofinal functor coincides with
the classical categorical notion of cofinal functor.
Remark 5.12. In [1] the first author used the fact that the map of polynomial monads
Opn ! SOp is a Wn�2-homotopically cofinal functor to prove the Baez–Dolan
stabilization hypothesis for Rezk’s weak n-categories. Here, Opn is the polynomial
monads forn-operads, SOp is the polynomialmonad for symmetric operads andWn�2

is the fundamental localizer for .n � 2/-truncated homotopy type.

6. Twisted Boardman–Vogt tensor product and Thomason’s theorem

Since polynomial monads form a 2-category we can ask about lax-colimits of a
diagram in PMon. Such a lax-colimit can be given explicitly as another version of
Grothendieck construction.
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Let A be a small category and F WA ! PMon be a strict 2-functor. We then
define a new polynomial monad

H
F as follows. The set of its colours is the set of

pairs .a; i/ where a 2 A and i 2 F.a/0 is a colour of the polynomial monad F.a/.
An operation consists of the following data:

1. An operation ˇ 2 F.b/;

2. A family of morphisms ˛d W ad ! b in A, where d runs over the set p�1
b
.ˇ/ and

where pb is the middle map of the polynomial monad F.b/;

3. A family of colours of jd 2 F.ad /, d 2 p�1.ˇ/ such that F˛d .jd / D sb.d/,
d 2 p�1

b
.ˇ/, where sb is the source map of the monad F.b/.

A marked operation is the operation ˇ with a marked element d 2 p�1.ˇ/ and the
middle map forgets the marking. The source map assigns to a marked operation the
pair .ad ; jd /, where d is the marked element. The target of an operation ˇ as above is
the pair .b; t.ˇ//. The unit and composition operation of the polynomial monad

H
F

are obvious now. In order to distinguish this construction from Grothendieck
construction of a categorical algebra we will call the polynomial monad

H
F twisted

Boardman–Vogt tensor product.
A relation of twisted Boardman–Vogt product with the classical Grothendieck

construction is given by the following:

Proposition 6.1. Let E be a symmetric monoidal category. The category of algebras
of
H
F is isomorphic to the category of sections of the Grothendieck construction of

the functor
AlgF .E/WAop

! CAT;

which associates to an a 2 A the category AlgF.a/.E/ and to a morphism f W a! b

the functor F.f /�WAlgF.b/.E/! AlgF.a/.E/.
That is an algebra X of

H
F consists of a family of F.a/-algebras X.a/,

a 2 A together with family of F.a/-morphisms �.a/WX.a/! F.f /�X.b/ for each
f W a! b which satisfies obvious functoriality conditions.

Proof. By direct inspection.

The following corollary justifies our terminology.

Corollary 6.2. LetD be a polynomial monad and let F WA! PMon be the constant
functor F.a/ D D then I

F Š D ˝BV A;

where˝BV is the Boardman–Vogt tensor product of symmetric operads.

Proof. Indeed, algebras of
H
F in this case are just presheaves of algebras of D,

which is a defining property of the Boardman–Vogt tensor product.
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Remark 6.3. The Boardman–Vogt product was defined for symmetric operads not
for polynomial monads. It can not be restricted under equivalence between †-free
symmetric operads and polynomial monads in general because the result of this
product may not be†-free. Famous example is, of course, the isomorphism Ass˝BV
Ass Š Com, which is an incarnation of the Eckmann–Hilton argument.

But, it is not hard to check that theBV -product of a†-free operad and a category
(symmetric operad with unary operations only) is again †-free, so our sentence
makes sense.

Corollary 6.4. LetX be a categorical algebra of
H
F . Then an internal

H
F -algebra

x in X consists of a family of internal F.a/-algebras x.a/ in X.a/ together with a
family ofmorphisms of internal algebras (in the sense of Definition 4.8)�.a/W x.a/!
f �.x.b//, which satisfies the usual lax-compatibility conditions.

It is obvious that in the case of presheaves in Cat twisted BV -product and
Grothendieck constructions are equivalent. Indeed, given F WA ! Cat one can
form

H
F . But we also can consider F as a categorical A-algebra. Then

R
F is

isomorphic to
H
F . But in general, there can not be even a cartesian polynomial

monad map
H
F ! A because if such a map exists the pullback of the middle maps

would force
H
F to be a category. Instead of this we have an obvious functoriality of

the twisted BV -product in the sense that every natural transformation  WF ! G of
presheaves of polynomial monads over A induces a map of polynomial monadsI

 W

I
F !

I
G:

If F is a presheaf of small categories and 1 is the constant terminal presheaf of small
categories then the uniquemorphism eWF ! 1 induces

H
eW
H
F Š

R
F !

H
1 D A,

which is exactly the projection from classical Grothendieck construction.
Given  WF ! G we can now construct the classifier .

H
G/

H
F .

Proposition 6.5. The classifier .
H
G/

H
F is the categorical

H
G-algebra freely

generated by the internal F.a/ algebras x.a/ 2 G.a/F.a/; a 2 A together with
morphisms �.a/W x.a/ ! f �.x.b// for each f W a ! b in A which satisfy obvious
lax-functorial property.

Proof. This follows from general description of universal properties of the classifiers
and Lemma 6.4.

Given  WF ! G we also can construct yet another canonical categoricalH
G-algebra as follows. For each a 2 A we take the classifier G.a/F.a/ of

 .a/WF.a/ ! G.a/. By Proposition 4.7 these objects form an algebra in Cat
of
H
G. By slightly abusing notations we will call it GF and call it local classifier

algebra of  .
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Theorem 6.6. There is a canonical morphism

‰W .

I
G/

H
F
! GF

of categorical
H
G-algebras which is a weak equivalence of simplicial

H
G-algebras

after application of nerve functor.

Proof. We can get the map ‰ from universal property of classifiers as follows. It
will be enough to observe that GF contains a canonical internal

H
F -algebra. But

this follows from Proposition 4.9 and Corollary 6.4 where all morphisms �.a/ are
identities.

Also observe that according to Proposition 6.5 each G.a/-algebra .
H
G/

H
F .a/

contains an internalF.a/-algebrawhich immediately provides uswith aG.a/-algebra
morphism p.a/WGF .a/! .

H
G/

H
F .a/. By universal property the functor p.a/ is a

section of‰.a/ but not necessary a .
H
G/

H
F -algebras morphism. But we claim p.a/

is the left adjoint to‰.a/. Indeed the counit p.a/. .a/.f �.b//! f �.x.b// on the
generating internal F.b/-algebra x.b/ in in G.b/ is given by canonical morphism
�.a/W x.a/! f �.x.b// since p.a/. .a/.f �.b// D x.a/ for any f W a ! b (since
the morphism ‰ maps each �.a/ to the identity).

Remark 6.7. This theorem allows to see more relations between twistedBV -product
and Grothendieck construction. There is a canonical factorization of the map of
polynomial monads

H
 W
H
F !

H
GWH

F //

H
 !!

R
GF

||H
G

This is just the mate under the adjuction between Grothendieck construction and
classifier functor of the canonical map ‰ from the classifier .

H
G/

H
F to the local

classifier algebra GF .
In the case of a map of presheaves in Cat the canonical morphism ‰ can be also

understood as the counit of the adjunction between Grothendieck construction and
classifier functor.

Corollary 6.8. The simplicial
H
G-algebra N..

H
G/

H
F / is a cofibrant replacement

of the simplicial
H
G-algebra N.GF /.
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Now let  WF ! G be a morphism of presheaves of polynomial monads over
a polynomial monad D. By universal property of lax-colimit we then have a
commutative triangle of maps of polynomial monads:H

F
t //

e
  

H
G

d
~~

D

where t D
H
 . The map d induces a left Quillen functor dŠWAlgH G.SSet/ !

AlgD.SSet/.
Proposition 6.9. There exists an isomorphism in the homotopy category of simplicial
D-algebras:

LdŠ.N.G
F // Š N.D

H
F /:

Proof. Compute

eŠ

�
N
�� I

F
�H F �

D N
�
eŠ

�� I
F
�H F �

D N.D
H
F /:

On the other hand this object is equal to

dŠtŠ

�
N
�� I

F
�H F �

D dŠ

�
NtŠ

�� I
F
�H F ��

D dŠ

�
N
�� I

G
�H F �

:

Since N..
H
G/

H
F is a cofibrant replacement for the nerve of GF we have that the

last object is isomorphic in Ho.AlgD.SSet/ to the result of application of the derived
functor of dŠ to N.GF /.

This proposition allows us to prove the following generalisation of a classical
Thomason’s theorem about homotopy colimits of small categories [21].
Theorem 6.10. Let F be a presheaf of polynomial monads over a polynomial
monadD. Then N.D

H
F / is weakly equivalent to hocolimAN.DF.a//.

Proof. We take G to be the constant functor G.a/ D D. Then we have a natural
transformation of presheaves  WF ! G whose components are derived from the
components of cocone of F overD. The left adjoint dŠ is then the colimit over A in
the category ofD-algebras.

Corollary 6.11 (Thomason). For a presheaf F of small categories over A the nerve
of its Grothendieck construction is homotopy equivalent to the homotopy colimit of
the presheaf of nerves.

Proof. It is sufficient to take D D 1. The classifier 1
H
F is just the Grothendieck

construction
R
F and the local classifier algebra 1F is just F itself.



1546 M. A. Batanin and F. De Leger

Theorem 6.12. Let F be a presheaf of polynomial monads over a polynomial
monadD. The following conditions are equivalent:
1.
H
F ! D is a homotopically cofinal functor;

2. N.D
H
F / is contractible;

3. For any map of polynomial monadsD ! R the natural map

hocolimAN.RF.a//! N.RD/

is a weak equivalence.

Proof. The equivalence of (1) and (2) is the definition of homotopically cofinal
functor. Now (2) is equivalent to (3) by Theorem 6.10 and Corollary 5.5.

7. Homotopy pushouts of classifiers

For our application purpose we will be mostly interested in homotopy pushouts of
classifiers. In other words we are going to consider presheaves of polynomial monads
over the category ƒ with three objects and two nontrivial arrows:

2 � 0 �! 1:

Main question for us is then given a commutative square of polynomial monads (10)
over a polynomial monad R when the square

N.RA/
N.Rf /

//

N.Rg/

��

N.RB/

N.RF /

��

N.RC /
N.RG/

// N.RD/

(13)

is a homotopy pushout square in the category of R-algebras?
Example 7.1. In the square above let F Wƒ ! PMon is such that F.0/ D A,
F.1/ D B , F.2/ D C are monoids and D be the pushout of this diagram. Let
R D 1. Then the map hocolimƒN.RF.a// ! N.RD/ is the map from homotopy
pushout of classifying spaces of this diagram of monoids to the classifying space of
the pushout. This situation was considered by Fiedorowicz in [12, Theorem 4.1]1.
It was proved that a sufficient condition for this map to be a weak equivalence is
that ZŒB� and ZŒC � are flat ZŒA�-modules, where ZŒM � is the monoid ring of a
monoidM .

1The first author is grateful to Andrey Lazarev for pointing out Fiedorowicz’s theorem.
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An example away from categories is one of the main topics in [5]:
Example 7.2. LetT be a polynomialmonadwith the set of colorsC and letF.1/ D T
andF.0/ D F.2/ D I , where I is the identity polynomialmonadwith the same set of
coloursC . The colimit of such diagram is T D D again. The monad

H
F in this case

is the monad T f;g from [5]. Let R D T then the colimit over the classifier T Tf;g

“computes” the pushouts of algebras of T along a free map of T -algebras. The
homotopy type of N.T Tf;g / can be very nontrival.
Definition 7.3. We will call a commutative square of polynomial monads (10)
homotopically cofinal if the equivalent conditions of Theorem 6.12 are satisfied.

Thus for a homotopically cofinal square any square like (13) is a homotopy
pushout of R-algebras.
Proposition 7.4. 1. For any polynomial monadD the constant square

D
id //

id
��

D

id
��

D
id // D

is homotopically cofinal.
2. If in a commutative diagram of polynomial monads

A //

��

C

��

// E

��

B // D // F

the left square is homotopically cofinal, then the outer square is homotopically
cofinal if and only if the right square is homotopically cofinal.

3. In a commutative cube of polynomial monads

A0

��

//

  

B 0

��

!!

A

��

// B

��

C 0 //

  

D0

!!

C // D

let the back square be homotopically cofinal and let A0!A, B 0!B and C 0!C

homotopically cofinalmorphisms. Then the front square is a homotopically cofinal
square if and only ifD0 ! D is homotopy cofinal.
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Proof. For the first statement we observe similarly that for any D ! R we get a
constant square of nerves of classifiers which is a homotopy pushout in the category
of simplicial R-algebras.

To prove the second statement it is enough to consider an arbitrary map of
polynomial monads F ! R. Then we obtain a commutative diagram of classifiers
overR. From standard properties of homotopy pushouts we get that after application
of nerve the outer square is a homotopy pushout of simplicial R-algebras if and only
if the right square is a homotopy pushout. So Theorem 6.12 implies the result.

Finally, for the third statement letF Wƒ! PMon be the functor which constitutes
the left corner of the front square. Let F 0Wƒ! PMon be the corresponding functor
for the back square. Then we have a commutative square of polynomial monads
maps: H

F 0 //

��

H
F

��

D0 // D

The nerve of the classifier of the map
H
F 0 !

H
F is the cofibrant replacement

of the nerve of the local classifier F F 0 which is contractible because F.i/! F 0.i/

is homotopically cofinal for each i D 0; 1; 2. So, by Corollary 5.5 the map

N.D
H
F 0/! N.D

H
F /

is a weak equivalence. On the other hand, since the back square is homotopically
cofinal

H
F 0 ! D0 is a homotopically cofinal map by definition. Therefore, the map

N.D
H
F 0/! N.DD0/

is also a weak equivalence. The composite of two homotopically cofinal maps is
homotopically cofinal map again and so if one of the twomapsD0 ! D or

H
F ! D

is homotopically cofinal,
H
F 0 ! D is homotopically cofinal and the nerve of its

classifier is contractible which implies that the other map must also be homotopically
cofinal.

Remark 7.5. It is instructive to give a description of the classifierD
H
F ; for F Wƒ!

Poly as in the square (10). According to general theory of classifiers from [5,
Section 6.3] an object of this categoricalD-algebra are given by specifying:
1. an operation ˇ of the polynomial monadD;
2. a labelling of the sources of ˇ by numbers 0; 1; 2.
Morphisms are generated by morphisms in DA, when we multiply operations in D
with 0-labelled sources and, similarly, by morphisms in DB and DC when we
multiply operations with 1 and 2 labelled sources respectively. We also have two
other type of generators: one can replace a source labelled by 0 by a source labelled
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by 1 or 2. There are relations on this type of morphisms which comes from the
requirement that f and g in (10) are polynomial monad maps.

8. Mapping spaces between pointed algebras of polynomial monads

Let T be a polynomial monad and let T� be the monad whose category of algebras
is the category of pointed T -algebras; that is, the comma-category 1=AlgT . There is
a map of monads

uWT ! T�

such that the restriction functor u�WAlgT� ! AlgT “forgets the point.” Analogously,
let T�� be the category of double pointed algebras; that is, the category 1

`
1=AlgT .

We have a pushout of monads:

T
u //

u

��

T�

��

T� // T��

(14)

We can consider this pushout as a pushout of monads over T� because the identity
idWT� ! T� induces a map of monads

U WT�� ! T�:

such that the restriction functor AlgT� ! AlgT�� “doubles the point.”

Theorem8.1 (Formal delooping theorem). AssumeT� is a polynomialmonad and the
square (14) is homotopically cofinal. Then, for any pointed simplicial T -algebra X ,
there is a weak equivalence of simplicial sets:

�MapAlgT .1; u
�X/ � MapAlgT�� .1; U

�X/;

where �MapAlgT .1; u
�X/ is the loop space with the base point given by the point

1! X in the T -algebra X .

Proof. By assumption the square (14) satisfies the conditions of Theorem 6.12.
Therefore we have a homotopy pushout of nerves of classifiers over T�. For a fibrant
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replacement fib.X/ of a T�-algebra X , we then have a homotopy pullback

AlgT�.N.T
T��
� /;fib.X// //

��

AlgT�.N.T
T�
� /;fib.X//

��

AlgT�.N.T
T�
� /;fib.X// // AlgT�.N.T

T
� /;fib.X//

By adjunctions

AlgT�.N.T
T��
� /;fib.X// � MapAlgT�� .1; U

�X/;

AlgT�.N.T
T
� /;fib.X// � MapAlgT .1; u

�X/;

and AlgT�.N.T
T�
� /;fib.X// � MapAlgT� .1; X/:

But, in the category of pointed T -algebras, the terminal algebra is also the initial
object so the space MapAlgT� .1; X/ is contractible. This completes the proof.

Remark 8.2. The condition that the monad of pointed algebras is polynomial is not
trivial. This is true for any tame monad in the sense of Batanin and Berger [5]. Yet,
for example, it does not hold for the monad for symmetric operads.

Let T be a polynomial monad with set of colours I and let i 2 I . Let Id be
the identity polynomial monad on Set, and let IdI be the identity polynomial monad
on SetI . There is a cartesian map of polynomial monads

i W Id! IdI
which sends the unique colour to the element i and the unique operation to the identity
on i . (Both monads are small categories, the map i corresponds to the functor from
the terminal category which picks up the object i .)

We also have a one coloured polynomial monad IdC, which “adds a point” to
each set X . Explicitly, IdC is given by the following polynomial

1 1
soo

p
// 2

t // 1

where 2 is the set with two elements f0; 1g and p sends 1 to 0. The algebras of IdC
are pointed sets. Let now TC be the pushout of polynomial monads

Id i //

�

��

IdI
�

// T

��

IdC // TC :

(15)
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The algebras of TC are, therefore, the algebras of T equipped with a marked point
in degree i 2 I . We called them i -pointed T -algebras.

Now let
f WT ! S

be a map of polynomial monads. Suppose that the composite i ı � ı f W Id! S can
be factorised through the unit of IdC. We then have a map of polynomial monads

F WTC ! S:

This factorisation condition says that the�.i/-th componentX�.i/ of anyS -algebraX
has a “marked” point 1! Xi and the restriction functor f � preserves this canonical
point.
Theorem 8.3 (Formal Fibration sequence theorem). If the square (15) is homotopi-
cally cofinal then for any simplicial S -algebra X , there is a fibration sequence

MapAlgTC .1; F
�X/! MapAlgT .1; f

�X/! fib.Xi /;

where fib.Xi / is a fibrant replacement for the simplicial set Xi .

Proof. Let fib.X/ be the fibrant replacement of the S -algebra X . Observe then, that
the i -th component fib.X/i is also a fibrant replacement fib.Xi / for the simplicial
set Xi . We have the following homotopy pushout of nerves of classifiers

N.S Id/ //

��

N.ST /

��

N.S IdC/ // N.STC/ :

We then have a homotopy pullback of simplicial sets

AlgS .N.STC/;fibX/ //

��

AlgS .N.ST /;fibX/

��

AlgS .N.S IdC/;fibX/ // AlgS .N.S Id/;fibX/:

(16)

By adjunction we have a simplicial set isomorphism

AlgS .N.S Id/;fibX/ Š AlgId.N.IdId/; i���f �.fibX//:
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The space i���f �.fibX/ is just the simplicial set fib.Xi / and we have

AlgId.N.IdId/; i���f �.fibX// Š MapAlgId.1;fib.Xi // � fib.Xi /:

Analogously:

AlgS .N.S IdC/;fibX/ Š AlgIdC.N.Id
IdC
C /; ˛�.fibX//;

where ˛W IdC ! S . It can be seen by a direct calculation or by the universal property
that the classifier IdIdCC is just the pointed category with two objects 0 (a point) and 1,
and one nontrivial arrow 0 ! 1. The nerve of this category is a pointed simplicial
interval. Hence, AlgIdC.N.Id

IdC
C /; ˛�.fibX// is the path space over fib.Xi /.

These calculations show that the bottom arrow in the homotopy pullback (16) is
the classical path fibration over fib.Xi /. The rest of the proof follows from the usual
adjunction argument.

Remark 8.4. A special case of this theorem is when F is an identity map. Then, for
any i -pointed T -algebra, we have a fibration sequence

MapAlgTC .1; X/! MapAlgT .1; X/! fib.Xi /;

where we skip notation for the forgetful functor from i -pointed T -algebras to
T -algebras. This is a conceptual explanation of Theorem 8.3.

Part II. Applications

9. Multiplicative operads, bimodules and weak bimodules

The non-symmetric operad which is equal to the unit e in each degree is called
associativity operad and is denoted by Ass. If E is a cartesian category then Ass D 1
is the terminal object in the category of non-symmetric operads NOp.
Remark 9.1. In the literature, Ass is often used to denote the symmetrised version
of our associative operad.
Definition 9.2. Amultiplicative non-symmetric operad is a non-symmetric operad O

together with an operadic morphism

Ass! O:

The category of multiplicative non-symmetric operads NOp� is the category
Ass=NOp. We have a forgetful functor

u�WNOp� ! NOp:
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Definition 9.3. Let A and C be two non-symmetric operads. An A-C -bimodule in
a symmetric monoidal category E is given by:
� an object Bn for all n � 0,
� morphisms

Ak ˝Bn1 ˝ � � � ˝Bnk ! Bn1C���Cnk

called left actions,
� morphisms

Bk ˝ Cn1 ˝ � � � ˝ Cnk ! Bn1C���Cnk

called right actions,
satisfying the obvious analogue of the axioms for non-symmetric operad and a
compatibility condition between left and right actions.
Remark 9.4. Notice that in the definition of left action one can take k D 0 and so an
empty product of Bs; that is, the tensor unit e 2 E . On the right hand side we will
have then an empty sum of natural numbers that is 0. So we have a map A0 ! B0

as one of the structure operations for the left A-module.
Remark 9.5. It is not hard to see that the left Ass-module on a family Bn 2 E is
given by an associative pairing:

Bp �Bq ! BpCq;

which is unital with respect to the unit Ass0 ! B0.
The rightAss-module structure is the same as a structure of a functorBn D B.Œn�/

on the subcategory �surj � � of order-preserving surjections. For the Ass-Ass-
bimodule these structures are required to be compatible in the obvious sense.

Recall that non-symmetric operads can be defined in terms of ıi -operations
[18, Definition 11]. The ıi -operations are obtained as the composites:

Ok ˝On D Ok ˝ e ˝ � � � ˝On ˝ � � � ˝ e

1˝�˝:::˝1˝:::˝�
������������! Ok ˝O1 ˝ � � � ˝On ˝ � � � ˝O1

m
�! OkCn�1 (17)

Definition 9.6. Let A and C be two non-symmetric operads. A weak A-C -bi-
module W in a symmetric monoidal category E is given by
� an object Wn in E for all n � 0,
� for i D 1; : : : ; k, morphisms

ıi WAk ˝Wn ! WkCn�1

called left action,
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� for i D 1; : : : ; k, morphisms

�i WWk ˝ Cn ! WkCn�1

called right action,
satisfying the analogue of the axioms for non-symmetric operads in terms of ıi -oper-
ations and a compatibility condition again.
Remark 9.7. It is easy to prove that a weak Ass-Ass-bimodule is the same as a functor
�! E; that is, a cosimplicial object in E .

We use the notations Bimod andWbimod for the categories of Ass-Ass-bimodules
and weak Ass-Ass-bimodules respectively.

There is a forgetful functor

v�WNOp� ! Bimod:

The category of pointed bimodules Bimod� is the category v�Ass=Bimod. We have
two forgetful functors

b�WBimod� ! Bimod
and w�WBimod� !Wbimod:

Proposition 9.8. 1. There are polynomial monadsNOp;Bimod andWBimodwhose
categories of algebras are isomorphic to the categoriesNOp;Bimod andWBimod
respectively. Moreover, the functors v� and w� are isomorphic to the restriction
functors along the maps of polynomial monads:

vWBimod! NOp�
and wWWBimod! Bimod�:

2. The monads NOp and Bimod satisfy the conditions of Theorem 8.1. The functors
u� and b� are induced by the maps of polynomial monads

uWNOp! NOp�
and bWBimod! Bimod�:

Proof. For the description of the monad NOp see Example 2.7.
The monads Bimod and WBimod indeed have been described by Turchin in [23]

without explicitly saying it. For this reason, and because in Section 10 we will
describe a closely related construction, we give only a brief description now. For
Bimod, the corresponding polynomial is given by

N Btr�soo
p

// Btr t // N :

Here Btr is the set of isomorphism classes of certain planar trees with black and white
vertices (called beads in [23, p. 14]). The restrictions on the class of trees are [23]:
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1. An edge cannot connect two black vertices;

2. If a tree has a white vertex then the path between any leaf or stump (valency one
vertex) and the root should pass through one and only one white vertex;

3. There is exactly one tree without white vertices. This special tree has one black
vertex and no leaves (this tree is here to accommodate a special operation described
in the Remark 9.4.

As Turchin notices, the second condition means that one can draw any such tree T in
a way that all white vertices lie on the same horizontal line.

Remark 9.9. We use a more general type of planar tree here in comparison with
[23, Part 1] because we allow vertices of valencies 1 and 2. This kind of tree is
considered in Part 2 of [23].

The rest of the data for the polynomial monad Bimod is very similar to NOp.
The set Btr� is the set Btr with one of the white vertices marked and the middle
map, source and target having the same description as for NOp. The multiplication
is induced by insertion of a tree to a marked vertex and contraction of all edges
connecting black vertices.

The monad WBimod is given by the polynomial

N WBtr�soo
p

//WBtr t // N

where the class of planar trees WBtr consists of planar trees with black and exactly
one white vertex (see [23, p. 11]) and the rest of the structure is analogous to the
previous.

The polynomial monad NOp� has been described many times in the literature in
terms of a †-free N-colored operad of planar trees with white and black vertices
(see [4] for a description in terms of trees and lattice paths of complexity 2 as well
as for earlier references). The monad Bimod� can be given a similar description
using the corresponding class of trees. We skip its description here because we will
describe a very similar monad in Section 10.

The maps of polynomial monads v, w, u, and b are easy to guess from the
restrictions functors v�, w�, u� and b�.

10. First cofinality theorem

Many constructions of this and subsequent sections are instances of twisted
Boardman–Vogt tensor product fromSection 6. We use some visible special notations
for corresponding polynomial monads for a convenience of the reader.
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Consider the following polynomial monads:
1. The monad NOp�!� � whose algebras are cospans

A! C  B

of non-symmetric operads.
2. The polynomial monad Bimod�C� whose algebras are triples .A; X;B/ where

A;B are non-symmetric operads and X is a 1-pointed A-B bimodule.
There is map of polynomial monads

f WBimod�C� ! NOp�!� � (18)

such that the restriction functor along it forgets operadic structure onC and remembers
onlyA-B-bimodule structures induced by two operadicmaps aswell as the base point
in C given by the unit of the operad C .

Analogously, let Bimod�!� � be the polynomial monad whose algebras are
cospans

A! C  B

of Ass-Ass-bimodules.
Also let Wbimod�C� be the polynomial monad whose algebras are triples

.A; X;B/ where A;B are Ass-Ass-bimodules and X is a 0-pointed A-B-bimodule.
This last object is given by a family of sets Xn; n � 0 together with:
1. a point ? 2 X0,
2. left A-action

Ap �Xq ! XpCq;

3. right B-action
Xp �Bq ! XpCq;

4. extension of Xn D X.Œn�/ to a functor on the subcategory �surj of � with order-
preserving surjections as morphisms.
Both actions are required to be associative and unital with respect to the pairing

defined in Remark 9.5 as well as compatible with each other in the usual sense. They
also have to be natural with respect to the morphisms in �surj.
Remark10.1. If in the definition of algebra ofWbimod�C� the bimodulesADBD1,
are both the terminal Ass-Ass-bimodule then X is a 0-pointed weak Ass-Ass-
bimodule.

There is a map of polynomial monads

gWWbimod�C� ! Bimod�!� � (19)

such that the restriction functor along it forgets the bimodule structure on C .
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Theorem 10.2. The maps

f WBimod�C� ! NOp�!� �
and f WWbimod�C� ! Bimod�!� �

are homotopically cofinal.

Proof. We have to prove that the classifier NOpBimod�C�
�!� � is contractible.

First of all we need explicit descriptions of the polynomial monads NOp�!� �
and Bimod�C�.

The monad NOp�!� � is given by the polynomial

N
`

N
`

N Ptr�1O2
soo

p
// Ptr1O2

t // N
`

N
`

N:

(20)
Here, Ptr1O2 is the set of isomorphism classes of planar trees whose vertices can have
three colours: white or black of two types 1 or 2. We also associate one of these
colours to each tree (called its target colour). The only condition is that this colour is
white type if the tree contains only white vertices or any mixed type vertices. If all
vertices of the tree are black of the same type, the target colour can be of the same
type as the vertices colour or white. So, for such a tree, we necessary have two copies
in the set of operations: one with the corresponding black colour as target and one
with the white colour. Also each copy of N has its own colour (again, white or black,
1 or 2.)

2

2

1 1

Figure 1. Typical tree from Ptr1O2.

As usual Ptr�1O2 is the set Ptr1O2with one vertexmarked. The sourcemap produces
a natural number of the corresponding colour (white or black 1 or 2) depending on
what kind of vertex is marked. The target map returns the number of leaves as before,
which is placed to a copy of N of target colour of the tree.

The polynomial of the monad Bimod�C� is

N
`

N
`

N Ptr�1B2
soo

p
// Ptr1B2

t // N
`

N
`

N:
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The set Ptr1B2 is a subset of Ptr1O2 whose elements subject to the following
restrictions:

1. If a tree has all vertices black they must have the same type and the target type of
such a tree is also the same;

2. If there is a white vertex in a tree, the path between any leaf or stump and the
root should pass through one and only one white vertex (second of Turchin’s
restrictions), the target type of the tree must be white in this case;

3. Black vertices along a path like the one above have type 1 before the path meets a
white vertex and type 2 after the white vertex;

4. There are exactly three copies of the tree without vertices (a free living edge) each
of them having 1 as target but of different types: black 1, black 2 or white.

This last requirement corresponds to the constants in the theory. Each free living
edge represents a nullary operation. Operations with black target represent units of
each operad, whereas the free livng edge with white target represents the base point
in the 1-pointed bimodule.

2

2

1

Figure 2. Typical tree from Ptr1B2.

The map f WBimod�C� ! NOp�!� � is now obvious. It is the identity on
colours and is the natural inclusion on other sets.

We are now ready to describe the classifier NOpBimod�C�
�!� � .

By definition this is a family of categories indexed by natural numbers of three
types. If we consider restriction to any of the black colours 1 and 2 the corresponding
classifier is isomorphic to the absolute classifier for non-symmetric operads, therefore
the category NOpBimod�C�

�!� � .nb/, for any nb a “black” natural number, is contractible.
Let us concentrate on the categories NOpBimod�C�

�!� � .nw/ indexed by white natural
numbers. So, we fixed one of them. By general machinery of Batanin and Berger [5]:

Proposition 10.3. 1. The objects of this category are trees from P1O2 with exactly
nw leaves.
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2. The morphisms are generated by:

(a) contractions to a white vertex of edges where the upper vertices are black of
the first type and the lower vertex is white

1 1 1
�!

(b) contractions to a white vertex of edges where the upper vertices are white and
the lower vertex is black of the second type

2 �!

(c) contractions of edges with black vertices of the same type;
(d) insertion of a vertex of valency 2 of any of the types on an edge. For example:

1 1�!

3. the relations are generated by the usual bimodules relations, as well as the
operadic relations. So, for example, the squares below commute:

1 1

1 1 1

1 1

1 1 1

2

2 2

2

2

2

1 1 1

2

1 1 1



1560 M. A. Batanin and F. De Leger

Remark 10.4. The role of the morphism of insertion of a white vertex deserves
a separate comment. Combining this morphism with the morphism of bimodule
contractions, we obtain two important families of morphisms in the classifier
NOpBimod�C�

�!� � :
1. Morphisms which replace a black vertex of type 1 by a white vertex:

1 1�! �!

2. Morphisms which replace a black vertex of type 2 by a white vertex:

2

2

�! �!

There is one exception to the rule of replacement of a black vertex of type 2,
namely, if such a vertex has valency 1. In this case, however, we have a special
operation in the left bimodule (see Remark 9.4) which provides a morphism

2 �!

These morphisms make the classifier NOpBimod�C�
�!� � look very similar to the

absolute classifier NOpNOp�!� ��!� � . Indeed, as categories they have the same objects
and in both categories there are morphisms of replacing black vertices by white
vertices. In the absolute classifier NOpNOp�!� ��!� � these morphisms correspond to two
internal operad morphisms, which is a part of the NOp�!� �-algebra structure. The
difference between these categories is that in NOpBimod�C�

�!� � there are no contractions
of edges connecting white vertices, which reflects the fact that we just have an internal
bimodule, not an operad.

Remark 10.5. One can develop a very similar theory in the case of reduced operads
and bimodules (this is the case of Turchin’s paper [23, Part 1]). Reduced means that
operads and bimodules we consider are such that X.0/ D ; and X.1/ D 1. All
A-B-bimodules are, therefore, canonically 1-pointed. The corresponding classifiers
do not contains vertices of valencies 1 and 2 and, hence, are finite. Indeed they
are finite posets. The following is a picture of the category RNOpRBimod�C�

�!� � .3w/

(Figure 3).
The nerve of this poset is clearly contractible. It is also visible what makes it work.

The operadic contractions in this picture are replaced by bimodule contractions. If
we are able to invert those morphisms, we get an internal operad structure on corollas
withwhite vertices togetherwith two operadicmaps from two internal operads formed
by black corollas. This is the conceptual main point of our theorem.
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Figure 3.

We continue with a formal proof of contractibility of the classifier NOpBimod�C�
�!� � .

There is a map of polynomial monads

uWNOp�!� � ! NOp (21)

constructed as follows. On colours

N
a

N
a

N ! N

it is an identity on each summand. On operations it forgets about all colours (vertices
colours as well as target colours) of trees from Ptr1O2. In other words it only
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remembers the shape of the tree. This is a cartesian map and the restriction functor
along this map applied to an operad O returns a cospan O

id
! O

id
 O. We then have

the following commutative square of cartesian maps of polynomial monads:

Bimod�C�
f ıu

//

f

��

NOp

id

��

NOp�!� �
u // NOp

(22)

By Proposition 4.7, we then have a map of classifiers

F WNOpBimod�C�
�!� � ! u�.NOpNOp/: (23)

We are going to prove that the nerve of this map is a weak equivalence which, of
course, will imply the contractibility of NOpBimod�C�

�!� � . The map (23) on objects has
the same effect as (21) on operations. It also maps contractions to contractions while
any morphism which comes from replacement of black vertices by white vertex is
mapped to the identity.

We fix a particular n 2 N and consider the restriction of the map of the classifiers
(23) to the component indexed by nw (it is clear that on components with black
colours the map (23) is an isomorphism). To make our notation less heavy we give
names to two of our categories as follows:

NOpBimod�C�
�!� � .nw/ D C

and u�.NOpNOp/.f .nw// D D:

The restriction of (23) on this components will simply be denoted by F .
For any d 2 D, we write Fd for the (strict) fiber of F over d ; that is, the full

subcategory of objects c 2 C such that F.c/ D d .

Definition 10.6 ([8]). A functor F WC ! D is smooth if, for all d 2 D, the canonical
functor

Fd ! d=F

induces a weak equivalence of nerves.
Dually a functor F WC ! D is proper if, for all d 2 D, the canonical functor

Fd ! F=d

induces a weak equivalence of nerves.



Polynomial monads and delooping of mapping spaces 1563

We have the following lemma [8, Proposition 5.3.4]:

Lemma 10.7. A functor F WC ! D is smooth if and only if for all maps f1W d0 ! d1
in D and all objects c1 in Fd1 , the nerve of the “lifting” category C.c1; f1/ of f1
over c1, whose objects are arrows f W c ! c1 such that F.f / D f1 and arrows are
commutative triangles:

c
g

//

f
��

c0

f 0
~~

c1

with g a morphism in Fd0 , is contractible.
There is a dual characterisation for proper functors.

We call any tree in C which has only one vertex a corolla. We call the unique
vertex connected to the root vertex. The root path from a vertex is the path from this
vertex to the root vertex. Using a description of the categoryC from Proposition 10.3,
we have the following lemma:

Lemma 10.8 (Characterisation of trees that can be contracted to a corolla). Let c 2 C
be a corolla. There is a morphism from a tree a to c in C if and only if the tree a
satisfies the following property:
� the root path from any vertex consists of a sequence of black vertices of type 1

followed by at most one white vertex followed by a sequence of black vertices of
type 2.

2

2

1 1

Figure 4. Tree satisfying the property �.

Proof. Assume that a satisfies the property �. We use induction on the maximal
length of a root path in the tree a. If a is a corolla, then the statement is trivial. If a is
not a corolla, one can consider a to be a forest of branches joined at the root vertex.
All the branches satisfy the property � and have maximal path root length strictly
less than a. By induction, they can therefore be contracted to a corolla. If the root
vertex is black of type 2, the remaining tree can always be contracted. If not, then all
the vertices above the root vertex in a are black of type 1, and the remaining tree can
also be contracted.



1564 M. A. Batanin and F. De Leger

For the other direction of the equivalence, assume that a does not satisfy the
property �. Notice that if a tree a does not satisfy the property � and a ! b is a
generating morphism, then b does not satisfy the property �. Yet the corolla satisfies
the property �, which is a contradiction.

Lemma 10.9. The functor F WC ! D is smooth.

Proof. Let f1W d0 ! d1 in D and c1 in Fd1 . According to the Lemma 10.7, we have
to prove that the nerve of the category C.c1; f1/ is contractible.

Observe that C.c1; f1/ is isomorphic to the full subcategory of C consisting of
trees with the same shape as d0 which can be contracted to c1. Moreover, C.c1; f1/
is also isomorphic to a product of categories C.cv1 ; f

v
1 / where:

� v runs over the vertices of d1,
� d v1 is the corolla whose set of leaves is equal to the set of incoming edges of v,
� d v0 is the subtree of d0 containing all the vertices that are sent to v through f1,
� f v1 W d

v
0 ! d v1 is the contraction to the corolla,

� cv1 is the corolla with the same color as the vertex v of c1.
If the unique vertex of cv1 is black, then C.cv1 ; f

v
1 / is the terminal category and

its nerve is contractible. We can therefore assume that cv1 is a corolla with a white
vertex.

In conclusion, all we have to prove is the contractibility of the nerve of Cd , which
is defined as the subcategory of trees in C with the same shape as d 2 D and that
can be contracted to a corolla with a white vertex.

Let us introduce the following notations:
� We write C1 for the full subcategory of Cd consisting of trees whose all non root
vertices are black of type 1.

� We write C2 for the full subcategory of Cd consisting of trees whose root vertex
is black of type 2.
Using lemma 10.8, we deduce that Cd D C1 [C2.
The subcategory C1 contains only 3 objects, and one of them is terminal for this

subcategory, namely, the tree where the root vertex is white and all other vertices are
black of type 1.

The subcategory C2 is isomorphic to the product of the subcategories
Cd1 ; : : : ;Cdk , where d1; : : : ; dk are the subtrees coming up from the root vertex
of d . Indeed, an object c 2 C2 can be associated to a sequence of objects
c1; : : : ; ck 2 Cd1 ; : : : ;Cdk by taking the subtrees coming up from the root vertex
of d . This association is obviously a bijection thanks to the characterization of
Lemma 10.8. By induction, the nerves of Cd1 ; : : : ;Cdk are contractible. Therefore,
the nerve of C2 is also contractible.

Finally, the intersection C1\C2 contains only one object, namely the tree where
the root vertex is black of type 2 and all the other vertices are black of type 1.
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2 2
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1
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Figure 5. The subcategories C1 and C2.

To prove the first part of Theorem 10.2 it remains to show that the fiber Fd is
contractible for any d 2 D. This was already observed in the proof of Lemma 10.9.

For the proof of the second part of Theorem 10.2, we use a very similar scheme.
Because of this we give only a brief outline of the proof, mostly focussing on the
differences between the two cases.

Both polynomial monads Bimod�!� � and Wbimod�C� have N
`

N
`

N as
their colours and both involve specifically decorated planar trees.

For Bimod�!� �, we use trees which now have four different types of vertices:
white, black of type 1 or 2 and black vertices without any type. An edge cannot
connect two black vertices without type, and the path between any leaf or stump
(valency one vertex) and the root should pass through one and only one vertex which
is white or black of type 1 or 2.

1 2

Figure 6. A typical tree for Bimod�!� �.

For the monad Wbimod�C� we use similar trees subject to the restrictions:

1. A tree may have at most one white vertex;
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2. Black vertices of type 2 are on the left of the white vertex and black vertices of
type 1 are on the right of the white vertex;

3. If a tree has all vertices black, the typed vertices must have the same type;
4. There are exactly three copies of the tree without vertices (a free living edge) each

of them having 0 as target but of different types: black 1, black 2 or white.

2 2 1

Figure 7. A typical tree for Wbimod�C�.

The map f WWbimod�C� ! Bimod�!� � is now obvious. It is the identity on
colours and is the natural inclusion on other sets.

The description of the classifier BimodWbimod�C�
�!� � follows the usual pattern. The

role of constants is crucial as above. In the classifier BimodWbimod�C�
�!� � , they generate

the morphisms of insertion of a stump on one side of a tree. In particular, we have
the following morphisms of replacement:

1. Morphism replacing a black vertex of type 1 by a white vertex:

1

1
�! �!

2. Morphism replacing a black vertex of type 2 by a white vertex:

2

2
�! �!

These two morphism classes are enough to proceed with a proof of contractibility of
the classifier BimodWbimod�C�

�!� � in exact analogy with the proof for NOpBimod�C�
�!� � .

Remark 10.10. One can again consider a reduced version of the theory which in
this context means that bimodules and weak bimodules we consider have unique
operations in degrees 0 and 1 as in Turchin’s paper [23, Part 1]. In particular, such
weak bimodules are 0-pointed automatically. The corresponding classifiers do not
contains vertices of valency 1 and 2 and, hence, are finite posets. The following is a
picture of the category RBimodRWbimod�C�

�!� � .2w/:
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1 2

1 2

1 2

1 2

1 1 1 2 1 2 2 2

The nerve of this poset is clearly contractible.

11. Second cofinality theorem

LetBimodC be the category of 1-pointedAss-bimodules. Analogously, letWBimodC
be the category of 0-pointed weak Ass-bimodules. These categories are categories
of algebras of polynomial monads BimodC and WBimodC respectively obtained by
the pushouts described in the Theorem 8.3.
Theorem 11.1. There are homotopically cofinal maps of polynomial monads

f WBimodC ! NOp��
and gWWBimodC ! Bimod��:

Proof. As before we give the details of the proof of only the first part of the theorem.
The proof of the part concerning bimodules versus weak bimodules is very similar
and we leave it as an exercise.

Firstly we have to describe the monads NOp�� and BimodC explicitly. The first
monad is represented by a polynomial

N Ptr��O�
soo

p
// Ptr�O�

t // N :
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Here, Ptr�O� is the subset of Ptr1O2 consisting of trees with a condition that no edge
can connect two black vertices of the same type. Similarly, Ptr�O� is the subset of
Ptr�1O2 with one white vertex marked (so we do not allow insertion to black vertices).
The rest of the description of the monad is very similar to the monad NOp�!� �.

Analogously, the monad BimodC is represented by a polynomial

N Ptr��B�
soo

p
// Ptr�B�

t // N

where Ptr�B� � Ptr1B2 whose elements are subject to the condition as above. The
rest of the structure is also similar to the monad Bimod�C�. It is also clear how to
construct a map

f WBimodC ! NOp��: (24)

We are going to prove that this map of polynomial monads is homotopically cofinal.
We will need another map of polynomial monads intermediate between (19)

and (24). Namely, let NOpı!� ı be the monad whose algebras are cospans of
non-symmetric operads

A! C  B;

where A and B are such that A.1/ Š B.1/ Š 1.

Remark 11.2. We will call such non-symmetric operads semireduced because they
do not have nontrivial unary operations but may have nontrivial operations of arity 0.

Explicitly, such a monad given by a polynomial similar to (20) but corresponding
trees are semireduced; that is, they do not contain black vertices of valency 2. Also,
the colours for black types are now N n f1g.

Also, let BimodıCı be the monad whose algebras are given by triples of two
semireduced operads and a 1-pointed bimodule over them. We have a map of the
monads

f WBimodıCı ! NOpı!� ı:

All these monads are included in the following commutative diagram of cartesian
maps:

Bimod�C� //

��

BimodıCı //

��

BimodC

��

NOp�!� �
h // NOpı!� ı

k // NOp��

(25)

where the horizontal map h acts on colours as follows: on each Nbi ; i D 1; 2 it is
defined by h.n/ D n; n ¤ 1 and h.1/ D 0. On Nw it acts identically. On a tree
it erases all valency 2 black points. The horizontal map k on colours sends each
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element from black summand Nbi to 0 and it is an identity on Nw . On operations it
sends a tree to the maximal possible contraction of this tree with respect to operadic
contractions of black vertices. In other words, it contracts each edge which connects
two black vertices of the same type to a black vertex of this type. The top horizontal
maps act similarly.

The square (25) induces the following maps of classifiers:

GWNOpBimod�C�
�!� � ! h�

�
NOpBimodıCı

ı!� ı

�
;

EWNOpBimodıCı
ı!� ı ! k�

�
NOpBimodC

��

�
:

Lemma 11.3. The underlying functor of G has a left adjoint K.

Proof. Let n be one of the colours of the monad NOp�!� �. We will denote the
underlying functor ofG restricted to n by the same letterG to simplify the language.
Then G acts on objects of NOpBimod�C�

�!� � by erasing valency 2 black points. We
defineK on objects to be an inclusion of semireduced trees to the set of all trees. We
claim that this inclusion can be extended to a functor.

Indeed, the set of generators for morphisms in the classifier NOpBimodıCı
ı!� ı is the

same as in Proposition 10.3 except that in (d) we do not allow the insertion of black
points on an edge. The relations are also the same as in Proposition 10.3. To defineK
on morphisms is to define it on generators and we simply can do it by mapping a
generator to the corresponding generator. Since relations are the same we get a
functor.

Finally, the unit of the adjunction is the identity and the counit is a morphism
KG.a/! a which inserts all black points back to a after G erases them. It is trivial
to check that unit and counit satisfy the two triangle relations.

Lemma 11.4. The underlying functor of E is proper and has contractible fibres.

Proof. To see this we first want to prove that the underlying categories of C D

NOpBimodıCı
ı!� ı and D D NOpBimodC

�� are posets.
For an object a 2 C, let us denote by .C; a/ the full subcategory of C spanned by

the objects b for which there exists a morphism b ! a. Observe that by construction
of classifiers the category .C; a/ is a product of categories .C; av/where v runs over
the vertices of a and av is the corolla determined by v (that is, a corolla whose unique
vertex has the same colour as v and whose set of leaves is equal to the set of incoming
edges of v). Hence, it is enough to prove that each .C; av/ is a poset. Moreover, it is
enough to prove that av is the terminal object in this category.

If v is a black vertex of a type i D 1; 2, it is clear that .Cav/ is isomorphic to
the category of trees and their contractions whose all vertices are black of the same
type i . This is a poset with the terminal object av as easily follows from axioms of
semireduced non-symmetric operad.
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If v is a white vertex, we can use Lemma 10.8 to describe the objects of .C; av/.
All morphisms are operadic contractions between black vertices and bimodule
contractions for white and black vertices. The fact that av is terminal here follows
from the bimodule relations by a standard combinatorial technique involving the
diamond lemma and induction on the number of black vertices.

A similar kind of proof works for D.
The fiber Ed of the functor E over any tree d 2 D contains d as well. Moreover,

it is very obvious that d is the terminal object of this fiber. So, given f W d0 ! d1 inC
and c 2 Ed0 , an object of the lifting category of f under c0 is just any morphism
gW c0 ! c1 where c1 2 Ed1 . Since d1 is the terminal object in Ed1 , we have a
unique morphism from uW c1 ! d1 and hence, a morphism in the lifting category
from g ! g � u. Since we are in a poset, the morphism g � u does not depend on g.
Hence, it is the terminal object of the lifting category. This completes the proof.

Remark 11.5. To illustrate the idea of the proof above one can consider a reduced
version of the classifier NOpBimodC

�� . The following picture represents the category
d�RNOpRBimodC

�� .3w/ which is the target of the functor G.3w/ (see Figure 8). The
source of this functor is represented by the category shown at Remark 10.5.

The functor G simply “shrinks” certain faces of the polytope from 10.5. This
corresponds exactly to the contraction discribed by Turchin in [23, p. 34].

We can finish the proof of Theorem 11.1 by observing that N.G/ is a weak
equivalence (since G is a right adjoint) and N.E/ is a weak equivalence (since it is
proper with contractible fiber).

12. Dwyer–Hess–Turchin’s delooping theorems

Our goal is to prove the following theorem first established independently in [11]
and [23].

Theorem 12.1. For any simplicial multiplicative operad O, there exists a fibration
sequence of simplicial sets

�MapNOp.u�Ass; u�O/! MapBimod.v
�Ass; v�O/! fib.O1/:

For any simplicial pointed bimodule B, there exists a fibration sequence of
simplicial sets

�MapBimod.v
�Ass; b�B/! MapWBimod.w

�v�Ass; w�b�B/! fib.B0/:



Polynomial monads and delooping of mapping spaces 1571

1
2

1
2

2
11

2

1 2

1
22

1

1
2

1
2

Figure 8.

This theorem implies the explicit double delooping formula of Dwyer–Hess–
Turchin:

Corollary 12.2. Let a simplicial multiplicative operad O be such that O0 and O1
are contractible. Then there is a weak equivalence of simplicial spaces

holim�.O�/ � �2MapNOp.u�Ass; u�O/;

where O� is the cosimplicial object associated to multiplicative operad O.

Proof of Theorem 12.1. Since f WBimodC ! NOp�� is homotopically cofinal the
result will follow from Theorems 8.1 and 8.3 if we know that the squares (26)
and (27) are homotopically cofinal. This is the content of two lemmas below.

The proof for the second fibration sequence is similar.
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Lemma 12.3. The square

NOp //

��

NOp�

��

NOp� // NOp��

(26)

is homotopically cofinal.

Proof. According to the Theorem 6.12, we have to prove that the nerve of NOp
H
F
��

is contractible, where F is the presheaf of polynomial monads given by the span

NOp�  NOp! NOp�:

Using Proposition 7.4 and Theorem 6.12, the nerve of NOp
H
NOp is contractible,

where NOp is the constant presheaf

NOp NOp! NOp:

It will be enough to prove that NOp
H
F
�� and NOp

H
NOp as categories over N are

connected by a sequence of adjoint functors.
According to Remark 7.5 the objects of the category NOp

H
F
�� are given by trees

with two types of black vertices 1; 2 and three types of white vertices 0; 1; 2, with the
condition that no edge can connect two black vertices of the same type.

The morphisms are generated by:
� transformations of a black vertex to a white vertex of the same type or
transformations of a white vertex of type 0 to a white vertex of type 1 or to a
white vertex of type 2:

1 1 0 2 2�!  � �!  �

� operadic contractions of edges connecting white vertices of the same type.

The category NOp
H
NOp is the full subcategory of NOp

H
F
�� containing trees with

only white vertices.
We define alt.NOp

H
NOp/ as the full subcategory of NOp

H
NOp containing trees

with the condition that no edge can connect two white vertices of type 1 or two white
vertices of type 2. Similarly, we define alt.NOp

H
F
�� /.
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Then the inclusion
alt
�
NOp

H
NOp� ,! NOp

H
NOp

has a left adjoint that sends a tree to the same tree but where the edges connecting
two whites vertices of type 1 or two white vertices of type 2.

Similarly, there is an adjunction between alt.NOp
H
F
�� / and NOp

H
F
�� .

Finally, the inclusion

alt
�
NOp

H
NOp� ,! alt

�
NOp

H
F
��

�
has a left adjoint that sends a tree to the same tree but where the black vertices have
been turned into whites vertices of the same type.

In summary, we have a sequence of adjunctions

NOp
H
NOp alt

�
NOp

H
NOp� alt

�
NOp

H
F
��

�
NOp

H
F
��

a ` `

which concludes the proof.

Lemma 12.4. The square

Id //

��

Bimod

��

IdC // BimodC

(27)

is homotopically cofinal.

Proof. This timewe have to prove that the nerve of Bimod
H
F

C is contractible, whereF
is the presheaf of polynomial monads given by the span

IdC  Id! Bimod:

As in the previous lemma we will exhibit a string of adjunctions connecting
the category Bimod

H
F

C (over N) and a subcategory of Bimod
H
F

C whose nerve is
contractible.

The objects in Bimod
H
F

C are trees with two types of black vertices 1; 2 and three
types of white vertices 0; 1; 2. The conditions are:
� the white vertices of type 0 and 1 can occur only if the vertex has valency 2, that
is only one incoming edge;
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� there can be no edge between two black vertices of the same type;
� any path from a leaf and the root meets possibly a black vertex of type 1, then
possibly a white vertex of any type, then possibly a black vertex of type 2.
Remark that these conditions imply that if a vertex is black of type 2, it can only

be the root vertex.
The morphisms in Bimod

H
F

C are generated by:
� transformations of a white vertex of type 0 to a white vertex of type 1 or to a white
vertex of type 2

1 0 2 � �!

� addition of an unary white vertex of type 1 above a black vertex of type 2 or below
a black vertex of type 1, as long as the tree obtained is still in the set of objects,
for example

1

1

1�!

� bimodules operations when there are black vertices of type 1 above white vertices
of type 2 or when there are white vertices of type 2 above a black vertex of type 2

22

1 1 1
�!

or

2

2 2 2
�! 2

First, let us defineW012 as the full subcategory of Bimod
H
F

C containing the trees
for which the path from any leaf to the root vertex contains exactly one white vertex.

The inclusion
W012 ,! Bimod

H
F

C

has a left adjoint given which sends a tree to same tree but where we add a unary
white vertex of type 1 on all the paths from a leaf to the root vertex which do not
contain a white vertex.

Now, we defineW2 as the full subcategory ofW012 containing trees where white
vertices are only of type 2. It is obvious that W2 is isomorphic to BimodBimod.

We then have a sequence of adjunctions

W2 W02 W012

` a



Polynomial monads and delooping of mapping spaces 1575

where W02 is the full subcategory of W012 containing trees where white vertices are
only of type 0 or 2 and the functorsW02 ! W2 andW012 ! W02 turn white vertices
of type 0 to white vertices of type 2 and white vertices of type 1 to white vertices of
type 0 respectively.

This concludes the proof.
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